B-Math-II Final Exam ; Analysis 3; Open Notes

Time : $2.30 \mathrm{hrs} ; \quad$ Max Mark:70; 29 December 2021

1. a. Let $F(x, y):=x^{3}+y^{3}-3 x y-4,(x, y) \in \mathbb{R}^{2}$. Show that there exists a continuously differentiable function g defined by the equation $F(x, y)=0$ in a neighborhood of $x=2$ such that $g(2)=2$, and also find its derivative.
b. Show that the function $F: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ defined by $F(x, y):=(y \sin x, x+y+1)$ is locally invertible at $(0,1)$.
2. Let $-\infty<a<b<\infty$ and let $\left\{x_{n}, n \geq 1\right\}$ be a sequence in (a, b). Let $c_{n} \in \mathbb{R}$ such that $\sum_{n=1}^{\infty}\left|c_{n}\right|<\infty$. Let $I_{A}(x)$ be the indicator function of the set A. Let

$$
f(x):=\sum_{n=1}^{\infty} c_{n} I_{(0, \infty)}\left(x-x_{n}\right), a \leq x \leq b
$$

a. Show that the series defining $f(x)$ converges uniformly in $[a, b]$.
b. Show that f is continuous at each $x \neq x_{n}$.
3. Let $F: \mathbb{R} \rightarrow \mathbb{R}$ with $F(a)=b$.
a. State suitable hypothesis on F such that it has a continuously differentiable local inverse in a neighborhood of the point b. Prove your claim.
b. Define $f(t):=t+t \sin \left(\frac{1}{t}\right), t \neq 0 ; f(0):=0$. Show that $f^{\prime}(0)=1$. Does this contradict your claim in part a) ? If yes, explain why. If no, explain why not.
$(10+5)$
4. Let $F(x, y):=\left(e^{x} \cos y-1, e^{x} \sin y\right) ; G_{1}(x, y):=\left(e^{x} \cos y-1, y\right) ; G_{2}(x, y):=$ $(x,(1+x) \tan y) ;(x, y) \in \mathbb{R}^{2}$.
a. Show that $F=G_{2} \circ G_{1}$ in some neighborhood of $(0,0)$.
b. Compute the Jacobian $\operatorname{DF}(0,0)$ and verify the same using the chain rule.
c. Let $H_{2}(x, y):=\left(x, e^{x} \sin y\right),(x, y) \in \mathbb{R}^{2}$. Find $H_{1}(x, y)=(h(x, y), y)$ so that $F=H_{1} \circ H_{2}$ in a neighborhood of $(0,0)$.
5. Consider the 1-form $\eta:=\frac{x d y-y d x}{x^{2}+y^{2}}$ in $\mathbb{R}^{2}-\{(0,0)\}$. Let $\gamma(t):=(a \cos t, a \sin t), 0 \leq$ $t \leq 2 \pi, a>0$. Let $\{\Gamma(t), t \in[0,2 \pi]\}$ be a simple closed smooth curve in $\mathbb{R}^{2}-\{(0,0)\}$.
Let $r: T:=[0,2 \pi] \times[0,1] \rightarrow S:=r(T)$ be the 2-surface defined by

$$
r(t, u):=(1-u) \Gamma(t)+u \gamma(t) .
$$

Assume that r is $1-1$ and $S \subset \mathbb{R}^{2}-\{(0,0)\}$.
a. Show that $d \eta=0$.
b. Describe the boundary $\partial S=r(\partial T)$.
c. Show that $\int_{\Gamma} \eta=2 \pi$.

